Pages

Thursday, August 25, 2011

Planet X (Nibiru) Is Quickly Approaching 2012

Planet X or Nibiru is passed between the planets Mars and Jupiter a few 7,200 years ago. "It's definitely bigger than Pluto." So says Dr. Mike Brown of the California Institute of Technology who announced today the discovery of a new planet in the outer solar system.

The planet, which hasn't been officially named yet, was found by Brown and colleagues using the Samuel Oschin Telescope at Palomar Observatory near San Diego. It is currently about 97 times farther from the sun than Earth, or 97 Astronomical Units(AU). For comparison, Pluto is 40 AU from the sun.

This places the new planet more or less in the Kuiper Belt, a dark realm beyond Neptune where thousands of small icy bodies orbit the sun. The planet appears to be typical of Kuiper Belt objects--only much bigger. Its sheer size in relation to the nine known planets means that it can only be classified as a planet itself, Brown says.

Backyard astronomers with large telescopes can see the new planet. But don't expect to be impressed: It looks like a dim speck of light, visual magnitude 19, moving very slowly against the starry background.

The planet was discovered by, in addition to Brown, Chad Trujillo, of the Gemini Observatory in Mauna Kea, Hawaii, and David Rabinowitz, of Yale University, New Haven, Connecticut. They first photographed the new planet with the 48-inch Samuel Oschin Telescope on October 31, 2003. The object was so far away, however, that its motion was not detected until they reanalyzed the data in January of this year. In the last seven months, the scientists have been studying the planet to better estimate its size and its motions.

Tohoku Tsunami Created Icebergs In Antarctica

A NASA scientist and her colleagues were able to observe for the first time the power of an earthquake and tsunami to break off large icebergs a hemisphere away.

Kelly Brunt, a cryosphere specialist at Goddard Space Flight Center, Greenbelt, Md., and colleagues were able to link the calving of icebergs from the Sulzberger Ice Shelf in Antarctica following the Tohoku Tsunami, which originated with an earthquake off the coast of Japan in March 2011. The finding, detailed in a paper published online today in the Journal of Glaciology, marks the first direct observation of such a connection between tsunamis and icebergs.

The birth of an iceberg can come about in any number of ways. Often, scientists will see the towering, frozen monoliths break into the polar seas and work backwards to figure out the cause.So when the Tohoku Tsunami was triggered in the Pacific Ocean on March 11 this spring, Brunt and colleagues immediately looked south. All the way south. Using multiple satellite images, Brunt, Emile Okal at Northwestern University and Douglas MacAyeal at University of Chicago were able to observe new icebergs floating off to sea shortly after the sea swell of the tsunami reached Antarctica.

To put the dynamics of this event in perspective: An earthquake off the coast of Japan caused massive waves to explode out from its epicenter. Swells of water swarmed toward an ice shelf in Antarctica, 8,000 miles (13,600 km) away, and about 18 hours after the earthquake occurred, those waves broke off several chunks of ice that together equaled about two times the surface area of Manhattan. According to historical records, this particular piece of ice hadn't budged in at least 46 years before the tsunami came along.