Pages

Sunday, July 17, 2011

NASA's Dawn Spacecraft Enters Orbit Around Asteroid Vesta

PASADENA, Calif. -- NASA's Dawn spacecraft on Saturday became the first probe ever to enter orbit around an object in the main asteroid belt between Mars and Jupiter.

Dawn will study the asteroid, named Vesta, for a year before departing for a second destination, a dwarf planet named Ceres, in July 2012. Observations will provide unprecedented data to help scientists understand the earliest chapter of our solar system. The data also will help pave the way for future human space missions.

"Today, we celebrate an incredible exploration milestone as a spacecraft enters orbit around an object in the main asteroid belt for the first time," NASA Administrator Charles Bolden said. "Dawn's study of the asteroid Vesta marks a major scientific accomplishment and also points the way to the future destinations where people will travel in the coming years. President Obama has directed NASA to send astronauts to an asteroid by 2025, and Dawn is gathering crucial data that will inform that mission."

The spacecraft relayed information to confirm it entered Vesta's orbit, but the precise time this milestone occurred is unknown at this time. The time of Dawn's capture depended on Vesta's mass and gravity, which only has been estimated until now. The asteroid's mass determines the strength of its gravitational pull. If Vesta is more massive, its gravity is stronger, meaning it pulled Dawn into orbit sooner. If the asteroid is less massive, its gravity is weaker and it would have taken the spacecraft longer to achieve orbit. With Dawn now in orbit, the science team can take more accurate measurements of Vesta's gravity and gather more accurate timeline information.

Dawn, which launched in September 2007, is on track to become the first spacecraft to orbit two solar system destinations beyond Earth. The mission to Vesta and Ceres is managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the agency's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, which is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

The University of California, Los Angeles, is responsible for the overall Dawn mission science. Orbital Sciences Corp. of Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are part of the mission's team. JPL is a division of the California Institute of Technology in Pasadena.

read more

Thursday, July 14, 2011

AQUA Mission-NASA



Aqua Mission

Aqua is a major international Earth Science satellite mission centered at NASA. Launched on May 4, 2002, the satellite has six different Earth-observing instruments on board and is named for the large amount of information being obtained about water in the Earth system from its stream of approximately 89 Gigabytes of data a day. The water variables being measured include almost all elements of the water cycle and involve water in its liquid, solid, and vapor forms. Additional variables being measured include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures.

read more

Thursday, July 07, 2011

Cassini Spacecraft Captures Images and Sounds of Big Saturn Storm

PASADENA, Calif. – Scientists analyzing data from NASA's Cassini spacecraft now have the first-ever, up-close details of a Saturn storm that is eight times the surface area of Earth.

On Dec. 5, 2010, Cassini first detected the storm that has been raging ever since. It appears at approximately 35 degrees north latitude on Saturn. Pictures from Cassini's imaging cameras show the storm wrapping around the entire planet covering approximately 1.5 billion square miles (4 billion square kilometers).

The storm is about 500 times larger than the biggest storm previously seen by Cassini during several months from 2009 to 2010. Scientists studied the sounds of the new storm's lightning strikes and analyzed images taken between December 2010 and February 2011. Data from Cassini's radio and plasma wave science instrument showed the lightning flash rate as much as 10 times more frequent than during other storms monitored since Cassini's arrival to Saturn in 2004. The data appear in a paper published this week in the journal Nature.

"Cassini shows us that Saturn is bipolar," said Andrew Ingersoll, an author of the study and a Cassini imaging team member at the California Institute of Technology in Pasadena, Calif. "Saturn is not like Earth and Jupiter, where storms are fairly frequent. Weather on Saturn appears to hum along placidly for years and then erupt violently. I'm excited we saw weather so spectacular on our watch."

At its most intense, the storm generated more than 10 lightning flashes per second. Even with millisecond resolution, the spacecraft's radio and plasma wave instrument had difficulty separating individual signals during the most intense period. Scientists created a sound file from data obtained on March 15 at a slightly lower intensity period.

Cassini has detected 10 lightning storms on Saturn since the spacecraft entered the planet's orbit and its southern hemisphere was experiencing summer, with full solar illumination not shadowed by the rings. Those storms rolled through an area in the southern hemisphere dubbed "Storm Alley." But the sun's illumination on the hemispheres flipped around August 2009, when the northern hemisphere began experiencing spring.

"This storm is thrilling because it shows how shifting seasons and solar illumination can dramatically stir up the weather on Saturn," said Georg Fischer, the paper's lead author and a radio and plasma wave science team member at the Austrian Academy of Sciences in Graz. "We have been observing storms on Saturn for almost seven years, so tracking a storm so different from the others has put us at the edge of our seats."

The storm's results are the first activities of a new "Saturn Storm Watch" campaign. During this effort, Cassini looks at likely storm locations on Saturn in between its scheduled observations. On the same day that the radio and plasma wave instrument detected the first lightning, Cassini's cameras happened to be pointed at the right location as part of the campaign and captured an image of a small, bright cloud. Because analysis on that image was not completed immediately, Fischer sent out a notice to the worldwide amateur astronomy community to collect more images. A flood of amateur images helped scientists track the storm as it grew rapidly, wrapping around the planet by late January 2011.

The new details about this storm complement atmospheric disturbances described recently by scientists using Cassini's composite infrared spectrometer and the European Southern Observatory's Very Large Telescope. The storm is the biggest observed by spacecraft orbiting or flying by Saturn. NASA's Hubble Space Telescope captured images in 1990 of an equally large storm.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory in Pasadena manages the mission for the agency's Science Mission Directorate in Washington. The radio and plasma wave science team is based at the University of Iowa, Iowa City, where the instrument was built. The imaging team is based at the Space Science Institute in Boulder, Colo. JPL is a division of the California Institute of Technology, Pasadena.